Explore
Home 
Literature 
Links 
Posts 
Molecules 
Blogs 
Zeitgeist 
Markup Help 
News 
Everything Papers Books
Combinatorial drug treatment strategies perturb biological networks synergistically to achieve therapeutic effects and represent major opportunities to develop advanced treatments across a variety of human disease areas. However, the discovery of new combinatorial treatments is challenged by the sheer scale of combinatorial chemical space. Here, we report a high-throughput system for nanoliter-scale phenotypic screening that formulates a chemical library in nanoliter droplet emulsions and automates the construction of chemical combinations en masse using parallel droplet processing. We applied this system to predict synergy between more than 4,000 investigational and approved drugs and a panel of 10 antibiotics against Escherichia coli, a model gram-negative pathogen. We found a range of drugs not previously indicated for infectious disease that synergize with antibiotics. Our validated hits include drugs that synergize with the antibiotics vancomycin, erythromycin, and novobiocin, which are used against gram-positive bacteria but are not effective by themselves to resolve gram-negative infections.

Posts

Here’s another one for the Brute Force File, always noting that brute repetitious force is what machines are here for. A joint MIT/Broad Institute effort reports on a platform for combinatorial drug screening in nanodroplets, in this case looking for...