Explore
Home 
Literature 
Links 
Posts 
Molecules 
Blogs 
Zeitgeist 
Markup Help 
News 
Everything Papers Books
The tumor suppressor p53 is activated by stress and leads to cellular outcomes such as apoptosis and cell-cycle arrest. Its activation must be highly sensitive to ensure that cells react appropriately to damage. However, proliferating cells often encounter transient damage during normal growth, where cell-cycle arrest or apoptosis may be unfavorable. How does the p53 pathway achieve the right balance between high sensitivity and tolerance to intrinsic damage? Using quantitative time-lapse microscopy of individual human cells, we found that proliferating cells show spontaneous pulses of p53, which are triggered by an excitable mechanism during cell-cycle phases associated with intrinsic DNA damage. However, in the absence of sustained damage, posttranslational modifications keep p53 inactive, preventing it from inducing p21 expression and cell-cycle arrest. Our approach of quantifying basal dynamics in individual cells can now be used to study how other pathways in human cells achieve sensitivity in noisy environments.

Posts

This last August 11-14, systems biologists convened in beautiful Santa Fe, New Mexico, for the Fourth Annual q-bio Conference on Cellular Information Processing. The conference brought together a potent mix of theoretical and quantitative experimental biology...