Explore
Home 
Literature 
Links 
Posts 
Molecules 
Blogs 
Zeitgeist 
Markup Help 
News 
Everything Papers Books
Pre-mRNAs from thousands of eukaryotic genes can be non-canonically spliced to generate circular RNAs, some of which accumulate to higher levels than their associated linear mRNA. Recent work has revealed widespread mechanisms that dictate whether the spliceosome generates a linear or circular RNA. For most genes, circular RNA biogenesis via backsplicing is far less efficient than canonical splicing, but circular RNAs can accumulate due to their long half-lives. Backsplicing is often initiated when complementary sequences from different introns base pair and bring the intervening splice sites close together. This process is further regulated by the combinatorial action of RNA binding proteins, which allow circular RNAs to be expressed in unique patterns. Some genes do not require complementary sequences to generate RNA circles and instead take advantage of exon skipping events. It is still unclear what most mature circular RNAs do, but future investigations into their functions will be facilitated by recently described methods to modulate circular RNA levels.

Posts

There will always be more to Nature than meets the eye. During the 1950s and the 1960s, the importance of RNA in protein synthesis gradually emerged. RNA has always been seen as a linear molecule, a bit like a sentence which has a beginning and an end, and...