DOI 10.1021/jacs.7b13562 PMID 29419295

Ambimodal reactions involve a single transition state leading to multiple products. In such reactions, transition state theory gives no information about the ratio of products that are formed, and molecular dynamics must be performed to predict this ratio. Understanding the relationship between the transition structure and the product ratio is a long-standing problem in molecular dynamics. We have studied 15 ambimodal pericyclic reactions and investigated the relationship between the TS bond lengths in the saddle points and the product ratios from trajectory simulations. A linear correlation, ln(B:A) = -9.4(Bond??3 - Bond??2), is found with R^{2} = 0.92, where A and B refer to the products formed upon formation of bonds 2 and 3, respectively. The correlation shows that the ratio of products formed after the bifurcation is related to the partial bond lengths, and corresponding bond orders, in the transition state.