Explore
Home 
Literature 
Links 
Posts 
Molecules 
Blogs 
Zeitgeist 
Markup Help 
News 
Everything Papers Books
It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here, we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations.

Posts

Now here is something I didn’t expect: what may well be a completely new way to separate enantiomers, not based in any way on shape recognition versus another chiral substance.[Quick background for those not in the field: a great many three-dimensional...