Explore
Home 
Literature 
Links 
Posts 
Molecules 
Blogs 
Zeitgeist 
Markup Help 
News 
Everything Papers Books
One key challenge in the field of exploitation of solar energy is to store the energy and make it available on demand. One possibility is to use photochromic molecules that undergo light-induced isomerization to metastable isomers. Here we present efforts to develop solar thermal energy storage systems based on the dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch. New DHA derivatives with one electron-withdrawing cyano group at position 1 and one or two phenyl substituents in the five-membered ring were prepared by using different synthetic routes. In particular, a diastereoselective reductive removal of one cyano group from DHAs incorporating two cyano groups at position 1 turned out to be most effective. Quantum chemical calculations reveal that the structural modifications provide two benefits relative to DHAs with two cyano groups at position???1: 1)???The DHA-VHF energy difference is increased (i.e., higher energy capacity of metastable VHF isomer); 2)???the Gibbs free energy of activation is increased for the energy-releasing VHF to DHA back-reaction. In fact, experimentally, these new derivatives were so reluctant to undergo the back-reaction at room temperature that they practically behaved as DHA to VHF one-way switches. Although lifetimes of years are at first attractive, which offers the ultimate control of energy release, for a real device it must of course be possible to trigger the back-reaction, which calls for further iterations in the future.

Posts

Here's a summary of where we are at with Mads projectThe ChallengeDihydroazulenes (DHAs) are promising candidates for storing solar energy as chemical energy, which can be released as thermal energy when needed. The ideal DHA derivative has a large $\Delta...